Name:	Date:	Hour:Alg 1
Unit 7B Day 16: Standard for Focus Question: What is standard for	rm of Quadratic Functi	ions
A. Review standard form of poly Use the polynomial $6x^3 + 2x^5$ 1. Write the polynomial in st	nomials - 3x	kes a polynomial in standard form? 15 from highest to 10 west degree
B. Vertex Form to Standard Form Use the quadratic $f(x) = 3(x - 1)$. What information can you and 3. Expand it so that it is in standard Form 1. What information can you are a second form $\frac{3}{3}(x^2 - 12x + 1)$.	n $(-2)^{2} + 4$ automatically tell? 2. Can even $(-2)^{2} + 4$ automatically tell? 2. Can even $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$ $(-2)^{2} + 4$	ery quadratic be written in this form? Explain S, /c every quad has a real vertex $(x-z)(x-2) \times -2$ $x(x-z)-2(x-z)$ $x(x-z)$
4. What do you notice has remain C. Standard form of Quadratics	l'a" is the s	ex form and the standard form?
Any situation that involves jumping/ quadratic equation of the form $f(x)$ most useful form to physics because cases, a represents $\frac{1}{2}$ of the gravitation either be -4.9 if you are in meters per velocity and c represents the initial has Whether it is about an object going to thing it did in vertex and intercept for	throwing/hitting/kicking/shoot $= ax^2 + bx + c$. which is it is easy to write the equation onal constant (it is always negative second or -16 if you are in feweright. You will also see it writing in the air or a non-situational orm.	the standard form of a quadratic. This is the of an object being sent upward. In these real ative because gravity pulls down) and will et per secondb represents the initial upward ten as $h(t) = -gt^2 + v_0t + h_0$ al graph, the value of a still tells you the same
1. If $a < 0$, the parabola OPC If $ a > 1$ the parabola SSU 2. What information does c give	nny . If $0 < a < 1$, the truly $a < 1$, the you? Explain.	he parabola is wide $(0) = a(0)^2 + b(0) +$
3. Give the a, b, and c values, then $a) f(x) = x^2 - 3x + 4$ $a = 1 b = -3 c = 4$ $y = 1 (0, 4)$	give the y-intercept of the follows: b) $g(x) = -5x^2 - 3$ c)	* *

4. Turn each of the following vertex form quadratics into standard form.

Then, give the vertex, a and b values, and y- intercept.

$$g(x) = -\frac{1}{2}(x-3)^{2}+6$$

$$= -\frac{1}{2}(x-3)(x-8)+6$$

$$= -\frac{1}{2}[x(x-3)-3(x-8)]+6$$

$$= -\frac{1}{2}(x^{2}-3x-3x+9)+6$$

$$= -\frac{1}{2}(x^{2}-6x+9)+6$$

$$= -\frac{1}{2}(x^{2}-6x+9)+6$$

$$= -\frac{1}{2}x^{2}+3x-\frac{9}{2}+\frac{12}{2}$$

$$= -\frac{1}{2}x^{2}+3x+\frac{3}{2}$$

$$0 = -\frac{1}{2}$$

$$yixt (0,\frac{3}{2})$$

$$h = 3$$

b.
$$h(x) = -2(x+4)^2 - 1$$

 $= -2(x+4)(x+4) - 1$
 $= -2(x^2+8x+16) - 1$
 $= -2x^2 - 16x - 32 - 1$ $\times x^2 + 4x + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 4 + 16$
 $= -2x^2 - 16x - 33$ $+ 16x - 33$

5. Besides physics, there is another reason you need to know standard form:

During a spring break trip to St. Louis, Missouri, Melissa paid a visit to the St. Louis Gateway Arch. On the guided tour, she learned that the arch is 630 feet tall and the legs of the arch are 630 feet apart. Being on spring break but still thinking about math, she looked at the arch and immediate saw a local local

- a. Fill in the blank in the situation above.
- b. Draw an x and y axis on the picture. Then give three points on the archic
 - . Use your calculator to do quadratic regression and give the quadratic equation for the St. Louis Arch.
 - What is the equation and what form is it in? $-0.0063497063x^{2} + 4x$ Standard-form

ANY TECHNOLOGY (the calculator, online calculators, excel, go motions, etc) will always give the equation in standard form!