Name:	Date	#48	Number	Sets
-------	------	-----	--------	------

For each set of numbers decided if it is closed or not for each operation. If you say is not closed, provide a counter example to prove your answer.

1. The	natural numbers are clo	
Closed	Operation	Counter-example if you said it is not closed
NPS	Addition	
NIO	Subtraction	5-8=-2 -2 is not natural
1105	Multiplication	
Mo	Division	10:4=5 5 is not natural

2. The i	ntegers are closed under	• •		
Closed	Operation	Counter-example if you said it is not closed		
1/05	Addition			
Ves	Subtraction			
1105	Multiplication			
No	Division	-3 = - 12 = 4 + is not an integer		

3. The rational numbers are closed under				
Closed	Operation	Counter-example if you said it is not closed		
Ves	Addition			
Ves	Subtraction			
VPS	Multiplication			
Ves	Division			

Identify the <u>set(s)</u> to which each of the following numbers belongs by marking an "x" in the appropriate boxes. **Remember it may belong to more than 1 set**.

	Number	Natural	Integer	Rational
4.	6	X Best	X	
5.	-3		X Rest	X

		M	1	()
6.	$-\frac{1}{9}$			X Best
7.	$\sqrt{100} = 10$	XBest	X	X
8.	6+11=17	XBest	×	
9.	(-2)(-7) = 14	X Best		
10.	$\frac{-10}{2} = -5$		X Best	
11.	$\frac{12}{\sqrt{196}} = \frac{12}{\pm 14}$			X Best
12.	-7 - (-17) = 10	X Best		
13.	$\sqrt{8^2} = 8$	X Best		
14.	-9		Best	
15.	5 2			X Best
16.	219	X Best		X
17.	$\frac{\sqrt{25}}{5} = \frac{5}{5} \text{ or } 1$	X Best		
18.	$\frac{-\sqrt{8}}{\sqrt{2}} = -\sqrt{\frac{8}{2}} = -\sqrt{4}$	x can be argued	X Best	
19.	$\frac{1}{3} \div \sqrt{9}$ $\frac{1}{3} \div 3 \text{ or } \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{4}$	argued		X Best
*20.	6.25=64 or 25			X Best
	·		- it could tech	inically be

while square roots can
be for -, if the problem
be for -, if the problem
specifically has the - sign,
specifically has the regative
they want the regative
square root

But when they don't put the — Sign, they want the Dositive Square root