	Date:	Hour:	
_			

2 Day 10: No Correlation but Linear

orizontal and Vertical Lines)

ocus Question: How do I describe a line that is not increasing or decreasing?

A: Special Linear Cases

1. Describe the correlation of each scatterplot below.

- a) No Correlation
- o Negative
- d)
- e)

- 2. Which scatterplots did you call linear? D, C, O, E
- 3. Which scatterplots did you say had no correlation?
- 4. Looking back and #2 and 3, which scatterplots represent special cases? Explain.

Ot + E because they went positive or negative, but have a correlation

B. Vertical and Horizontal Lines

Variable 1

1. Draw the line would connect the data points? Describe what kind of line you drew.

2. Label each graph above as either a function or not a function.

- 3. Make a table for each graph Label the table as horizontal or vertical and function or not a function.
- 4. In each table identify which variable is not changing.
- 5. Write an equation for each graph and table.

X	У
	3
Ĭ	3
2	3
3	3
A	13

X	
3	0
3	1
3	2
3	3
3	4
	10

Equation: X=3

A vertical line $\frac{1}{5}$ Not a function because the <u>independent</u> is not changing. It has an equation of $\frac{1}{5}$ =#.

A horizontal (or <u>constant</u>) line $\frac{i}{s}$ a function. The dependent variable is not changing so the equation is $\frac{y}{s} = \#$.

7. Graph each line.

x = 4

8. Give the equation of each line

